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Abstract 

Background: Amyloid‑β (Aβ) PET has emerged as clinically useful for more accurate diagnosis of patients with cogni‑
tive decline. Aβ deposition is a necessary cause or response to the cellular pathology of Alzheimer’s disease (AD). 
Usual clinical and research interpretation of amyloid PET does not fully utilise all information regarding the spatial 
distribution of signal. We present a data‑driven, spatially informed classifier to boost the diagnostic power of amyloid 
PET in AD.

Methods: Voxel‑wise k‑means clustering of amyloid‑positive voxels was performed; clusters were mapped to brain 
anatomy and tested for their associations by diagnostic category and disease severity with 758 amyloid PET scans 
from volunteers in the AD continuum from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). A machine learn‑
ing approach based on this spatially constrained model using an optimised quadratic support vector machine was 
developed for automatic classification of scans for AD vs non‑AD pathology.

Results: This classifier boosted the accuracy of classification of AD scans to 81% using the amyloid PET alone with an 
area under the curve (AUC) of 0.91 compared to other spatial methods. This increased sensitivity to detect AD by 15% 
and the AUC by 9% compared to the use of a composite region of interest SUVr.

Conclusions: The diagnostic classification accuracy of amyloid PET was improved using an automated data‑driven 
spatial classifier. Our classifier highlights the importance of considering the spatial variation in Aβ PET signal for 
optimal interpretation of scans. The algorithm now is available to be evaluated prospectively as a tool for automated 
clinical decision support in research settings.
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Background
Alzheimer’s disease (AD) is characterised by amyloid-β 
(Aβ) [1–3] and tau deposition [4] in the brain. This neu-
ropathology progresses with disease symptoms and 
severity. AD affects 50 million people worldwide and, 
while it has no cure, its diagnosis has a major impact on 
people, their families and clinical care [5]. The number 
of people affected is forecast to triple by 2050 [6] making 
confident early diagnosis and monitoring ever more criti-
cally important.
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Aβ deposition in the brain is a necessary element [7] in 
the development of AD [8]. Higher brain Aβ deposition 
is associated with faster memory decline [9] and regional 
hypometabolism in distally connected brain regions [10]. 
Amyloid PET in life correlates well with post mortem Aβ 
deposition [11]. Amyloid PET thus has emerged as clini-
cally useful for the diagnosis of patients with cognitive 
decline in clinic [12, 13]. Amyloid PET has also been used 
both to better ensure patient diagnoses for inclusion and 
as an endpoint measure in clinical trials [14–16]. Sup-
plementation of clinical assessment with amyloid PET 
increases the accuracy of diagnosis and change in patient 
management [13, 17–19]. However, one challenge is that 
cognitively normal individuals and other non-AD pathol-
ogies also can show Aβ deposition [20, 21] with differen-
tial regional vulnerabilities.

The neuropathology in AD is distinguished by a neu-
roanatomically distinct pattern of Aβ and tau deposition, 
with a hypothesised mechanistic relationship between 
amyloid deposition and tau [1, 3, 4]. Early detection of 
pathological amyloid deposition may help to identify 
people at higher risk of progression to AD. Regional vul-
nerabilities to the accumulation of pathological proteins 
and neurodegeneration may arise as a consequence of 
their functional anatomy. Defining the changing regional 
distribution of the Aβ PET signal with progression thus 
may help both to characterise disease stages and under-
stand their clinical expression [22]. More recently, Tau 
PET has been shown to be useful in discriminating AD 
pathology; however, the high cost and low availability, 
and relative later life deposition, make it practically dif-
ficult at present [23].

Most current clinical interpretation of amyloid PET in 
real-world settings relies on a visual read of scans. The 
trained interpreter delineates cortical grey-white mat-
ter differentiation of amyloid PET signal, where reduced/
absent differentiation of tracer uptake indicates Aβ posi-
tivity [24]. A metric such as a global standardised uptake 
value ratio (SUVr) may be included in reports, but only 
limited spatial distribution information is used. Alterna-
tive quantitative metrics are available, but they do not 
explicitly take into account relationships between neu-
roanatomical variations in Aβ accumulation and the 
progression of cognitive impairment [25]. Regional and 
whole-brain specific information by use of a composite 
cortical SUVr mask to assess global amyloid burden is the 
primary outcome measure in many studies [26–28].

Our end goal was to develop an automated decision 
support to differentiate between AD and non-AD sub-
jects based on amyloid PET by utilising disease-relevant 
neuroanatomical (spatial) information. To do this we 
developed Aβ masks using a data-driven methodology 
with amyloid PET data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI). The de novo Aβ cluster 
masks generated and clinical classifications of subjects 
then were used to optimise a classifier to discriminate 
AD vs non-AD pathology compared to commonly used 
alternative spatial constraints. In addition, we used the de 
novo Aβ clusters to further understand the behaviour of 
Aβ and regional vulnerabilities to disease.

Methods
Figure 1 shows a high-level overview of the methods used 
in the study.

Data
Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public-private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment can be combined 
to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD). ADNI 
received US ethical approval from 58 study locations with 
all participants providing informed consent (ClinicalTri-
als.gov identifier: NCT01231971).

Participants
Participants from the ADNI database comprised cog-
nitively normal (CN), early mild cognitive impairment 
(EMCI), late mild cognitive impairment (LMCI) and 
Alzheimer’s disease (AD) with available  [18F] Florbetapir 
amyloid PET and corresponding T1 MPRAGE structural 
MRI scans (total n = 758), aged 55–90 years old.

Subjects were classified into CN, MCI (early and late) 
and AD by clinical history and neuropsychological evalu-
ation. CN subjects had Mini-Mental State Examination 
(MMSE) scores of 24–30 with no memory complaints 
and a Clinical Dementia Rating (CDR) of zero. MCI sub-
jects had MMSE scores of 24–30, CDR scores of 0.5 and 
objective memory impairment. AD patients had MMSE 
scores of 20–26 and CDR scores greater than 0.5. Full 
inclusion and exclusion criteria for ADNI are described 
elsewhere [29].

Imaging data
Each subject underwent a 20-min  [18F] Florbetapir PET 
scan 50 min post-injection (370±37 MBq) according to 
the standardised ADNI protocol. Image pre-process-
ing steps are described elsewhere (adni.loni.usc.edu/
methods/pet-analysis/pre-processing).
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[18F]Florbetapir PET were analysed using  MIAKATTM 
(version 4.3.7, miakat. org), that implements MATLAB 
(version R2019a), FSL (version 5.0.4) functions for brain 
extraction and SPM12 (fil.ion.ucl.ac.uk/spm) for image 
segmentation and registration.  [18F]Florbetapir PET were 
nonlinearly registered into MNI152 space with DAR-
TEL. Structural MRI images were segmented into GM 
(grey matter) and WM (white matter) with SPM12 and 
registered to a group average template. The group aver-
age template was then registered to MNI152 space. Each 
subjects’  [18F]Florbetapir PET SUVr image was registered 
to the corresponding MRI using a rigid-body registration. 
Individuals DARTEL flow field and template transforma-
tion was applied without modulation resulting in  [18F]
Florbetapir images in MNI152 space.

SUVr data were quantified by dividing each SUV image 
by its mean cerebellar GM reference. Mean and standard 
deviation voxel-wise GM masked images of each group 
(CN, EMCI, LMCI, AD) were created. Three z-score GM 
masked image of each group (EMCI, LMCI and AD) rela-
tive to CN was output where the group z-score = (group 
mean − CN mean)/CN standard deviation). A de-noised 
binarised mask (at SUVr threshold 1.1 [30–32]) of the 
AD z-score voxels was created to focus where most vari-
ance of Aβ occurs in AD.

Cluster‑based method
The AD z-score thresholded mask was applied to the 
whole  [18F]Florbetapir PET images dataset (all individual 
unthresholded GM masked images in MNI152). Voxels 

from 758 subjects were clustered into k groups accord-
ing to their SUVr intensities. To do so all spatially con-
strained voxels for each subject were concatenated into 
a long vector and a one-dimensional k-means cluster-
ing of a 1000 iterations per voxel using MATLAB was 
performed across all subjects between corresponding 
masked voxels for k = 2–13, where k denotes the number 
of clusters. For each voxel, the membership of the cluster 
it belongs to was determined, and the output clustering 
results were reshaped from a long vector into brain image 
space, mapping the clusters to anatomy.

In order to form clinical associations of each k clus-
ter and its divisions with disease category, each group 
(CN, EMCI, LMCI, AD) GM masked mean image was 
constrained by the AD z-score binarised mask. For 
each k cluster output image, its divisions were created 
and saved as a mask (n = 90 masks for k = 2–13). Each 
k cluster division mask was applied to each group. GM 
masked mean image was constrained by the AD z-score 
binarised mask in order to focus on AD relevant spatial 
information.

Associations with diagnostic category and clinical 
variables
We had 4 clinically defined groups of subjects and we 
considered them as defining a progression of disease in 
4 stages (CN, EMCI, LMCI, and AD). We considered the 
representation of voxels in each cluster by clinical stage 
and counted the number of voxels in each group within 
each k cluster’s divisions. This process of applying the 

Fig. 1 Overview of study methods: Training and performance evaluation shows the input which is a combination of  [18F] Florbetapir PET and T1 
structural MRI following co‑registration, segmentation and registration to MNI 152 space stratified by group. This is used to create a binarized mask 
of the AD z‑score voxels to focus where most variance of Aβ occurs in AD, and this is applied to the whole data set with k‑means clustering to map 
cluster results to anatomy where Aβ clusters 1–4 are shown. Clinical associations, model testing and optimisation, and performance evaluation 
compared to other spatial methods are conducted to form an algorithm. This algorithm allows the input of a new  [18F] Florbetapir PET and T1 
structural MRI and classifies the scan allowing for automated decision support

http://miakat.org
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k division masks and counting positive voxels was also 
repeated for each individual subject, then grouped by 
diagnostic category and ordered by progression. An 
amyloid positive voxel was determined accordingly to 
commonly associated thresholds for positivity [30, 31]. 
Additionally, spillover from WM was assessed by cal-
culating the mean SUVr in individual subjects within 
a WM mask and stratifying by group. MMSE and CDR 
correlations were explored for Aβ clusters 1–4 for scans 
from 730 subjects where an MMSE was recorded within 
6 months of the  [18F]Florbetapir PET and for 758 sub-
ject scans for which a CDR score was recorded within 3 
months of  [18F]Florbetapir PET.

Classification and performance evaluation
In order to classify AD vs non-AD, a support vector 
machine (SVM) was chosen [33]. An optimum SVM 
was selected by adjusting kernels, and serially testing 
classifications using quadratic, linear, and coarse Gauss-
ian SVMs. Twentyfold cross-validation using a quad-
ratic SVM across 342 subjects and 2 response variables 
(AD, CN) was performed in MATLAB. The optimised 
machine learning classifier for the following inputs was 
assessed for each individual subject for a total of 6 fea-
tures amyloid PET positive voxel clusters number 1–4 
(4), GM voxels positive, GM mean SUVr). The perfor-
mance of all 6 features were compared to the de novo Aβ 
clusters 1–4 (4 features), and features of existing meas-
ures namely composite SUVr, and 2 features of GM vox-
els positive, GM mean SUVr using logistic regression. 
Confusion matrices, accuracy, sensitivity, specificity, 
AUC-ROC, alongside error rates were evaluated for the 
4 inputs.

Results
Demographics
Seven hundred fifty-eight participants with available  [18F]
Florbetapir PET scans for processing were included in 
the analysis. Demographic data are shown in Table 1.

Data‑driven cross‑sectional staging
Quantitative voxel-wise analysis across all scans showed 
greater uptake in the precuneus, posterior cingulate, isth-
mus cingulate, and the medial and lateral orbitofrontal 
cortices in EMCI. Greater uptake was found in lingual, 

pericalcarine, precentral and post-central cortices in 
LMCI and AD (see Fig. 2).

Z-score images were created of EMCI, LMCI and AD 
amyloid PET relative to CN. There are large increases in 
Aβ cluster expansion with clinical progression of disease 
in the above areas.

K‑means results and mapping clusters to anatomy
K-means clustering of amyloid PET positive voxels was 
performed and mapped to anatomy in order to form the 
classifier (see Fig. 3). Areas that were delineated by clus-
tering included the precuneus, subgenual area, thalamus 
and anterior and posterior cingulate, prefrontal, occipital 
and orbitofrontal cortices.

A parsimonious model (k = 4) gave the most discrimi-
native clusters for distinguishing the clinically defined 
groups of subjects (see Fig.  4), broadly consistent with 
expectations from cross-sectional pathological assess-
ments post mortem [34]. Voxel clusters on silhouette 
plots for all k values tested and their discriminatory 
capacity are illustrated in Additional file 1: Figure 1 and 
Additional file 2: Figure 2 (Fig. 4). The relationship of this 
spatial model with GM and composite regions of interest 
are shown in Fig. 5. We also found that WM SUVr shows 
no difference between clinical groups (Additional file  3: 
Figure  3), reducing the likelihood that spillover from 
WM contributes to cluster delineation.

Clinical associations with amyloid PET positive clusters
Clinical associations of Aβ clusters defined using the k 
= 4 divisions with diagnostic category were explored 
(labelled as Aβ clusters 1–4). Violin plots were generated 
using Aβ clusters 1–4 masks applied to each individual in 
the whole population (Fig. 6) and tabulated (Table 2).

Cluster 1 showed an increase in the number of Aβ posi-
tive voxels with increasing clinical severity. Both CN and 
EMCI had similar medians with a normally distributed 
spread across the population. LMCI and AD showed 
similar distributions with a skew towards higher vox-
els positive, and a long thin tail towards 0 (AD  g1 = − 
1.79). Cluster 2 had a similar distribution but occupied a 
smaller area.

Cluster 3 showed a normal distribution in the popula-
tion of CN and EMCI. LMCI also showed a large spread 
in Aβ positive voxels across this population with a greater 
skew towards more positive voxels. The AD group 
showed a greater skew towards positive voxels (AD  g1 = 
− 1.10).

Associations of cluster 4 were markedly different 
from those of other clusters. CN and EMCI groups 
within this cluster had a skew towards 0 with a long 
thin tail extending towards higher voxels positive (CN 
 g1 = 1.21). LMCI scans showed a bimodal distribution 

Table 1 Clinical demographics of participants

CN EMCI LMCI AD

n 199 196 198 165

Age (SD) 76 (6) 70 (7) 72 (8) 76 (8)

% male 54 57 49 55
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with 2 peaks, one similar to the CN and EMCI groups 
at the lower end and a second with a similar distribu-
tion to AD at the higher end.

Taken together, these results highlight differences in 
the distribution of Aβ PET signal clusters 1–4 stratified 
by the clinical group. The clinically heterogenous MCI 
populations show a bimodal distribution (either like 
CN or AD) for cluster 4.

We evaluated the relationships of Aβ PET signal 
in clusters 1–4 with Mini-Mental State Examination 
(MMSE) and Clinical Disease Rating (CDR) scores. We 
found a negative relationship between the signal in all 
of the Aβ clusters 1–4 and MMSE (Pearson’s r values 
of − 0.24, − 0.14, − 0.25, − 0.36, respectively, p<0.001) 
for 730 individuals where MMSE was documented 
within 6 months of amyloid PET.

We also found a positive relationship between Aβ 
clusters 1–4 and CDR score (Pearson’s r values of 0.20, 
0.10, 0.22, 0.32, respectively, p < 0.001–0.004) for 758 
individuals where CDR was documented within 3 
months of Aβ PET.

Optimisation of classifier and performance
A quadratic support vector machine (SVM) [33] was 
chosen as a classifier following optimisation for a 
combination of multiple features. An optimised linear 
regression model was chosen as the most accurate clas-
sification of single feature composite SUVr and for two 
features (GM voxels and GM SUVr).

The resultant classifier increased sensitivity by 15%, 
and the area under the receiver operating curve (AUC) 
by 9% compared to the “gold standard” composite SUVr. 
The classifier increased sensitivity by 39%, and the AUC 
by 20% compared to using the number of amyloid GM 
voxels positive (thereby adding spatial information) and 
the unconstrained amyloid GM SUVr (see Tables 3 and 
4).

The optimum combination of 6 features (Aβ clusters 
1–4 and GM voxels and GM SUVR) boosted the accu-
racy of the classifier to classify AD to 81% using amy-
loid PET alone, with the highest sensitivity (0.83) and 
lowest error rate (AUC 0.91) relative to all other meth-
ods (see Fig. 7).

Fig. 2 GM masked images showing the mean SUVr (A), standard deviation SUVr (B), and Z‑score images overlaid on MNI 152 (C) and stratified by 
clinical group
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Discussion
We have generated a data-driven algorithm that provides 
an automated classification of amyloid PET scans from 

people across the AD continuum that outperforms exist-
ing spatial measures tested here to boost the independ-
ent diagnostic power of amyloid PET. This automated 

Fig. 3 K means voxel‑wise clustering results mapped to anatomy. Number corresponds to k value. Colours represent different clusters for a given k 
and do not correspond between images when k varies

Fig. 4 Mean number of voxels of each group (GM masked mean constrained by AD z‑score mask, thresholded at 1.1) for Aβ clusters 1–4 (A). Aβ 
clusters 1–4 map overlaid on MNI 152 (B)
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Fig. 5 Overlays of composite region of interest, GM and Aβ clusters 1–4 on MNI152. Panel A shows composite ROI on GM; panel B shows all Aβ 
clusters overlaid onto composite and GM. Panel D shows the relationship together between Aβ clusters 1–4 and composite. Panel E shows the Aβ 
clusters 1–4 individually and the overlap with composite

Fig. 6 Violin plots showing the distribution of the number of positive amyloid voxels in each individual for Aβ clusters 1–4 stratified by the clinical 
group. Dashed line indicates the median value, dotted lines divide quartiles, and the width of the probability density for n = 758 subjects
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classifier potentially could enhance the efficiency and 
accuracy with which amyloid PET scans are interpreted 
by radiologists and clinicians in the context of cognitive 
decline.

Our approach, derived from a data-driven model of 
amyloid PET positive clusters was optimised diagnos-
tically and used to generate a classification system. In 
doing so, we improved the spatial sensitivity of amyloid 
PET to detect AD to 0.83, with a high AUC of 0.91 using 
an optimised support vector machine. Use of a k-fold 
cross-validation prevented the overfitting associated with 
hold out validation and is powerful as trained over a large 
number of amyloid scans. The classifier was trained using 
data from across multiple sites to capture variances typi-
cal for multi-centre and multi-scanner datasets across 
the AD continuum. The algorithm will be available online 
(github. com/ brain region) for evaluation as a tool for 
automated clinical decision support in research and as an 
adjunct to practice.

In developing our classifier, we had the opportunity 
to explore disease staging by mapping the trajectory of 
in  vivo Aβ cluster expansion in AD using data-driven 
clustering of amyloid PET. Post mortem evidence shows 
that Aβ plaque deposition spreads neocortically, moves 
to allocortical areas, then diencephalic nuclei, and finally 
cerebellum, [35] with associated patterns of neurofibril-
lary tau tangle deposition [4, 35]. Newer in  vivo PET 

approaches to assess fibrillar Aβ-beta have been useful 
for assessing in vivo pathology; however, staging systems 
have either attempted to replicate classification systems 
used for post mortem neuropathology or are limited 
by the constraints of atlas-based approaches [36, 37]. 
Our approach differed from traditional approaches and 
uniquely assessed voxels positive within novel Aβ clus-
ters, as well as having an AD training set that is specific 
to Aβ pathology in AD. The Aβ clusters of a constrained 
area yielded higher accuracy, compared to a larger com-
posite ROI [26, 27, 38] (the primary outcome measure in 
many studies) or whole GM. Enlargement, rather than 
absolute intensity, is able to evaluate unique properties of 
Aβ accumulation through cluster growth.

There are several advantages of using an “explainable” 
model rather than “black-box” approaches of deep-learn-
ing methods used previously for similar classification 
questions [39–41]. Foremost, amongst these are the ease 
of interpretability of the spatial features derived from 
clustering and its relative simplicity of implementation. 
It also facilitates the assessment of the relationships of 
measures to well-described pathological and clinical 
stages of the disease. Other approaches combine different 
amyloid tracers [40], are mixed with other PET targets to 
achieve higher accuracy [41], or focus on visually equivo-
cal cases [39] and use the standard cortical SUVr mask, 
which our spatial model outperforms.

By exploring their clinical associations we found that 
a parsimonious model distinguishing 4 clusters was able 
to distinguish early from late disease and show differ-
ences in the distribution of positive Aβ voxels between 
disease groups. Usual clinical “visual” reads do not sup-
port this level of discrimination, which can be important 

Table 2 Median, interquartile range (IQR) and skewness of 
Aβ‑positive voxels in clusters 1–4 across the diagnostic category

CN
Median (IQR)

EMCI
Median (IQR)

LMCI
Median (IQR)

AD
Median (IQR)

1 8126 (5163) 8666 (4682) 10393 (5218) 11685 (2986)

2 6107 (1652) 6229 (1543) 6631 (1292) 6780 (829)

3 7285 (6038) 8028 (5988) 10350 (7309) 12666 (4908)

4 2818 (5370) 3492 (6797) 8633 (9214) 11264 (5498)

Skewness g1 Skewness g1 Skewness g1 Skewness g1

1 − 0.08 − 0.37 − 0.89 − 1.79

2 − 1.23 − 1.62 − 2.07 − 2.71

3 0.40 0.20 − 0.39 − 1.10

4 1.21 0.83 − 0.08 − 1.01

Table 3 Classification results comparing sensitivity, specificity, accuracy, AUC‑ROC and error rates for different methods

Method Features Sensitivity Specificity Accuracy AUC Error rate

Aβ clusters 1–4, GM voxels and 
GM SUVR

6 0.83 0.81 0.81 0.91 0.19

Aβ clusters 1–4 4 0.74 0.84 0.80 0.87 0.20

Composite SUVR 1 0.67 0.86 0.79 0.82 0.21

GM voxels and GM SUVR 2 0.44 0.85 0.69 0.71 0.31

Table 4 Percentage change compared to the proposed method 
‑ 6 features (Aβ clusters 1–4 and GM voxels and GM SUVr)

Method Sensitivity Specificity AUC 

Aβ clusters 1–4 − 8.3 3.0 − 4.0

Composite SUVR − 15.2 4.9 − 9.1

GM voxels and GM SUVR − 38.6 4.0 − 19.8

http://github.com/brainregion
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for research applications, as well as having clinical rele-
vance. This has relevance in that there may also be value 
in using different parts of the brain to track the progres-
sion of the disease—for example, Aβ cluster 4 to evaluate 
track LMCI progression given the bimodal distribution 
and understanding the regional vulnerability or inflexion 
point at which MCI converts to AD. Previous literature 
has evaluated Aβ in MCI but on smaller numbers [42]. 
This result may also reflect the diagnostic uncertainty of 
an MCI diagnosis, of which other causes need to be rule 
out, and the utility of Aβ PET to change management in 
an MCI population [13].

Future work involves testing the utility of using differ-
ent cluster regions to assess change at different clinical 

severity timepoints in response to potential disease-mod-
ifying therapeutics for AD in clinical trials.

Limitations
One limitation of this study is that it derives data infer-
ring progression based on a cross-sectional research 
derived dataset with Aβ PET signal accompanying 
MRI. However, over the long prodromal period of spo-
radic late-onset AD, cross-sectional analyses have been 
shown to predict longitudinal change well [32, 43]. 
Future work will involve replication in other cohorts 
to understand the extent to which results from these 
research-domain data can be generalised to usual clini-
cal imaging. Other limitations include that we uniquely 

Fig. 7 AUC‑ROC curve diagram of classification of AD vs CN for Aβ clusters 1–4 compared to and combined with other methods (A). The blue ROC 
curve is created by a combination of 6 features (Aβ clusters 1–4, GM voxels positive and GM mean SUVr) using SVM. The red ROC curve us created 
by the de novo Aβ clusters 1–4 using SVM. The dashed line ROC curve is a composite SUVr, and the green line is 2 features of GM voxels positive and 
GM mean SUVr using linear regression. Confusion matrices (B) with percentages for the corresponding ROC curves are on the right panel. These 
show the percentage of AD and CN individuals correctly predicted (blue) and incorrectly predicted (orange) for each method
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looked at the expansion of clusters over a cut-point 
with data-driven clusters and not the change in inten-
sity at a voxel-wise basis. An advantage of our approach 
is that traditional SUVr analyses are not able to pick up 
expansions in volume of amyloid clusters. Most larger 
cohort studies in AD lack histopathologically confirmed 
ground truth diagnoses. This is a limitation to the accu-
racy of the classifier; however, the large number of 
scans trained across multiple sites may help reduce the 
impact of site-specific inaccuracies. The radiotracer for 
scans employed in our study is  [18F]Florbetapir, which 
is one of the most widely used amyloid tracers. The 
binding site appears to be similar to that of other Aβ 
tracers [44]. We do not expect quantitative differences 
with other Aβ tracers [31] but this would need further 
testing.

Conclusions
Accurate diagnosis of AD in clinic is difficult given the 
variety of neuropsychiatric symptoms, the varying tra-
jectories of these, and confounding non-AD effects on 
cognition. We have developed a classifier that promises 
to boost the diagnostic power of amyloid-β PET using a 
data-driven model of amyloid cluster progression with 
AD. This algorithm, which is based on the progression 
of regional brain vulnerabilities to AD, provides auto-
mated diagnostic decision support that outperforms 
classifiers proposed previously for amyloid-β PET 
based on spatial constraints. The algorithm and its de 
novo cluster masks may be helpful for clinicians and 
radiologists investigating cognition in clinic.
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Additional file 1: Figure 1. Number of voxels of each group (GM masked 
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